If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(X^2)+(5X)+6=0
a = 1; b = 5; c = +6;
Δ = b2-4ac
Δ = 52-4·1·6
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1}{2*1}=\frac{-6}{2} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1}{2*1}=\frac{-4}{2} =-2 $
| -3p-1=-(1+3p) | | 157+14x+3=4x+10 | | (8x-15)1/5=2 | | 2x+17=-3/4x-6 | | 2-2-3x=4x-7x | | -2(w-10)=-50 | | 12+4x=9-3x | | 2k+3k=-10 | | -13+7=-3(x+6) | | -7(x+2)=-67 | | 3/y-6=-11 | | 6x+9-1x=1x-23 | | x+x+2=3x=31 | | xx6=2 | | -6+14=128x | | 17n+11=n | | 10x+11(1-x)=10.811 | | -5h-4=-9h | | 11=3-8x | | -8+12x=20 | | -70/7=x | | 4^2+3^2-2^2=b | | 3(+5)+3x+1=-32 | | -21=12c-11 | | 12x-152=96+4x | | -2(w-10)=-3 | | -3(3x+15)-(16+x)=35 | | `-4x+7=19` | | 7(x-6)=-70 | | -28=-2(8+p) | | 3(5x+9)=-25+37 | | 5(6+2x)-2(5x+4)=-4 |